DVB-T2: Новый стандарт вещания для телевидения высокой четкости

DVB-T2 Terrestrial

Ник Уэллс, Крис Нокс

DVB-T2: Новый стандарт вещания для телевидения высокой четкости

В материале изложены основные характеристики стандарта DVB-T2 и продемонстрированы возможности этой новой технологии, которую в Великобритании предполагается использовать при запуске ТВЧ в конце 2009 — начале 2010 года.


Введение

Как подтвердила практика, вторая версия спутникового стандарта DVB-S2 по сравнению с первой обеспечивает увеличение пропускной способности канала до 30%. В связи с этим, для передачи ТВЧ повсеместно используется DVB-S2 .

При попытке внедрить ТВЧ в эфирные сети их ограниченные ресурсы окажутся перегруженными еще быстрее. И так как ТВЧ в любом случае потребует смены абонентских приставок, был поднят вопрос о разработке нового эфирного стандарта, который позволил бы повысить пропускную способность эфирных каналов.

В феврале 2006 года в рамках консорциума DVB был создан исследовательский комитет (Study Mission), который должен был оценить потенциал различных технологий. Через полгода работа комитета была закончена, и DVB приступил к разработке стандарта DVB-T2. Вначале консорциум определил набор коммерческих требований, определяющих рамки данной разработки:

  • Трансляции Т2 должны приниматься на существующие домашние антенны, и переход на новый стандарт не должен требовать изменения инфраструктуры передающей системы. Это требование не позволило включить в стандарт технологию MIMO, которая потребовала бы новых приемных и передающих антенн.
  • T2 в первую очередь должен быть ориентирован на передачу на фиксированные и портативные антенны.
  • Т2 должен обеспечить, как минимум, 30%-ный прирост пропускной способности каналов относительно DVB-T при идентичных условиях передачи.
  • T2 должен улучшить работу одночастотных сетей (SFN).
  • T2 должен допускать возможность сосуществования в одном РЧ-канале услуг, передаваемых с разной степенью помехоустойчивости. Например, часть услуг, транслируемых по одному каналу шириной 8 МГц, может быть предназначена для приема на направленные антенны, установленные на крышах, а часть — для приема на комнатные портативные антенны.
  • Т2 должен повысить гибкость использования полосы и частот.
  • Должен присутствовать механизм,о возможности снижающий отношение пиковой и средней мощности передаваемого сигнала. Это позволит снизить эксплуатационные расходы.

 

Возможность внедрения ТВЧ в эфирные сети сейчас рассматривают сразу несколько стран. В Великобритании наблюдается особенно острый дефицит спектра для ТВЧ с учетом того, что весь спектр, который освободится после отключения аналоговых каналов, уже забронирован под передачу трансляций в стандартном разрешении. В то же время, Великобритания планирует отдать один канал под пакет ТВЧ. И чтобы максимально его загрузить, надо максимально эффективно использовать транспортный ресурс канала. В связи с этим и планируется запустить пакет в DVB-T2, который обеспечивает, как минимум, 30%-ный прирост пропускной способности. Предполагаемое время запуска ТВЧ в эфирнойсети — конец 2009 — начало 2010 года.

Стандарт был окончательно принят в июне этого года Предполагается, что в начале следующего года должен появиться дизайн VLSI для чипсета, а еще примерно год понадобится для выпуска ресиверов.

 

Базовые принципы

Основной принцип разработки стандартов семейства DVB заключается в том, что они должны, максимально, быть совместимы друг с другом. То есть преобразование сигнала при его переводе из одного формата в другой (например, из DVB-S2 в DVB-T2) должно быть максимально простым. Соответственно, при разработке новых стандартов, по возможности, должны использоваться те же механизмы, что и в существующих стандартах.

Поэтому две ключевые технологии T2 позаимствованы из стандарта DVB-S2. Это:

  1. Системная архитектура транспортных потоков, в первую очередь, инкапсуляция данных в низкочастотные Base Band (BB) пакеты (рассмотрены в следующем разделе).
  2. Использование помехозащитного кода с низкой плотностью проверок на четность Low Density Parity Check Codes — LDPC.

Большая часть решений, использованная при разработке Т2, была направлена на максимальное увеличение пропускной способности каналов. Ряд опций — новые размерности FTT и защитных интервалов, а также новые режимы введения пилот-сигналов, были введены для возможности оптимизации параметров в зависимости от характеристик конкретного канала.

 

Спецификация DVB-T2

Схемы помехоустойчивого кодирования (FEC) и Base Band (BB) кадры

Как показано на рис. 1, передаваемые данные пакетируются в BB-кадры, заголовок которых содержит информацию о характере данных. Затем данные закрываются LDPC FEC, аналогичным тому, который применяется в DVB-S2. Для устранения ошибок, оставшихся после LDPC-декодирования, данные дополнительно защищаются коротким кодом Боуза-Чоудхури-Хоквингема (Bose-Chaudhuri-Hocquenghem) BCH.

 

dvb1

 

Полная длина кадра с наложенным помехозащитным кодированием составляет 64800 бит. Этот кадр является базовым блоком системы T2. В рамках стандарта T2 доля контрольных бит помехозащитных кодов может колебаться от 15 до 50%. В качестве опции допускается и более короткий вариант FEC-кадра — длиной в 16 200 бит. Он может применяться для уменьшения задержек приема низкоскоростных услуг.

Данные, передаваемые внутри ВВ-кадра, как правило, представляют собой последовательность транспортных пакетов MPEG-2. В то же время, поля сигнализации в заголовке BB-кадра полностью совместимы с системой инкапсуляции IP-пакетов по новому DVB-протоколу под названием Generic Stream Encapsulation.

Тестовая имитация работы помехозащиты на базе LDPC показала существенное повышение помехозащищенности по сравнению с защитой, используемой в DVB-T, то есть сверточным кодированием в сочетании с кодом Рида-Соломона. Выигрыш в уровне С/N за счет нового FEC может составлять до 3 дБ для типичного уровня ошибок и при одинаковой доле контрольных символов. По существу, это улучшение позволяет повысить пропускную способность канала примерно на 30% (например, за счет применения более высокого уровня констелляции).

 

Модуляция

При разработке Т2 проводились сравнения нескольких вариантов модуляции с одной или множественными несущими. В результатe был выбран вариант OFDM c защитными интервалами (GI-OFDM), который используется в DVB-T.

В GI-OFDM каждый символ передается на большом количестве ортогональных несущих, модулируемых одновременно по фазе и амплитуде. В частности, DVB-T предусматривает два режима — 2К и 8К. Эти цифры отражают размерность FFT (быстрого преобразования Фурье), используемого для формирования сигнала с множественными несущими. Фактическое количество несущих, используемых для передачи данных, несколько меньше. Для защиты сигналов (то есть каждой несущей, используемой для передачи данного символа) от искажения в условиях многолучевого распространения введено дублирование конца каждого символа в защитном интервале, предшествующем передаче этого символа. Принцип показан на рис. 2.

 

dvb2

 

Длина защитного интервала выбирается в зависимости от расчетной протяженности эфирного тракта и других параметров сети передачи. Более длинные защитные интервалы требуются в одночастотных сетях, где сигналы с соседних передатчиков могут приходить на приемник со значительным запаздыванием относительно основного сигнала. Защитный интервал представляет собой надстройку, съедающую долю транспортного ресурса. В DVB-T эта надстройка может занимать до 1\4 общего объема передаваемых данных. Для возможности удлинить защитный интервал без увеличения его доли в общем объеме данных в Т2 были введены два новых режи-ма — 16К и 32К — с соответствующем увеличением числа ортогональных несущих. Рис. 3 иллюстрирует переход к режиму с большим числом поднесущих. В данном случае абсолютная величина защитного интервала сохраняется, но его доля в общем объеме снижается.

 

dvb3

 

Максимальная длительность защитного интервала в Т2 достигается в режиме 32К при отношении GI и длины всего символа 19/128. Длительность GI при этом превышает 500 мкс, чего вполне достаточно для строительства крупной общегосударственной одночастотной сети.

Таким образом, Т2 предлагает более широкий ряд размерностей FFT и защитных интервалов. А именно:

  • размерности FFT: 1K, 2K, 4K, 8K, 16K, 32K;
  • относительная длительность защитных интервалов: 1/128, 1/32, 1/16, 19/256, 1/8, 19/128, 1/4.

Как уже отмечалось, в OFDM каждая несущая модулируется по фазе и амплитуде. Высшая модуляция стандарта DVB-T, 64 QAM, обеспечивает передачу 6 бит одним символом (модулируемым элементом одной несущей1).

Высшая модуляция в Т2 увеличена до 256 QAM, она позволяет передавать одним символом 8 бит. Несмотря на то, что этот тип модуляции более чувствителен к ошибкам, обусловленным шумом, тестовая имитация показала, что LDPC FEC обеспечивает 30%-ное увеличение эффективности использования канала по сравнению с DVB-T при типовых условиях передачи.

Появившиеся в Т2 новые режимы — 16К и 32К — имеют значительно более крутой спад внеполосных составляющих, чем режим 2К. Как показано на рис. 4, это обстоятельство позволяет размещать несущие ближе к стандартной спектральной маске, которая накладывается на сигналы DVB-Т в полосе 8 МГц. Это расширение полосы позволяет передать еще 2% дополнительных данных.

 

dvb4

Распределенные пилот-сигналы

В системах OFDM используются распределенные пилот-сигналы. Они представляют собой модулированные элементы, определенным образом разнесенные по несущим и во времени. Приемнику известны параметры модуляции пилот-сигналов, и он может использовать их для оценки состояния канала.2 В DVB-T каждый двенадцатый модулированный элемент является пилот-сигналом, то есть они занимают 8% в общем объеме данных. Эта пропорция используется при любых вариантах защитных интервалов, и размещения пилот-сигналов должно быть таковым, чтобы позволить выровнять сигналы с защитным интервалом 1\4. Однако для меньших защитных интервалов добавка пилот-сигналов в количестве 8% оказывается избыточной. Поэтому в T2 введены восемь разных вариантов размещения. Каждому варианту относительной длительности защитного интервала соответствует несколько возможных опций размещения пилот-сигналов. Они динамически выбираются в зависимости от текущего состояния канала, что позволяет оптимизировать их количество. На рис. 5 показаны два возможных варианта размещения.

 

dvb5

 

Более плотное размещение пилот-сигналов может использоваться для снижения требуемого уровня С/N на входе приемника или для улучшения синхронизации. В последнем случае пилот-сигналы модулируются псевдослучайной последовательностью.

Дифференцированная помехоустойчивость отдельных услуг и структура кадра T2

Коммерческие требования к Т2 включали обеспечение различных уровней помехоустойчивости для разных услуг. Это может обеспечиваться использованием разных схем модуляции и степени помехоустойчивого кодирования. В Т2 это достигается путем группировки OFDM-символов внутри кадра, так что каждая услуга передается цельным блоком, занимающим в кадре определенный слот. Этот принцип иллюстрируется на рис. 6

 

dvb6

 

Начало кадра Т2 индицируется коротким OFDM-символом P1, представляющим собой 1K OFDM-символ с повторами начала и конца символа на соседних несущих (то есть со сдвигом по частоте), как это показано на рис. 7. Такая структура символа P1 с одной стороны позволяет легко его выявить, а с другой исключает возможность имитации символа каким-либо фрагментом основного кадра.

 

dvb7

 

Он обеспечивает простой и надежный механизм выявления трансляции Т2-ресивером, сканирующим спектр в режиме поиска, а также быстрый захват ресивером частоты и 6-битной сигнализации (например, для определения размерности FFT в кадре T2).

Стандартная продолжительность кадра Е2 — около 200 мс, а надстройка, требующаяся для передачи информации о структуре кадра, как правило, занимает менее 1%.

 

Перемежение

В T2 используется три каскада перемежений. Это практически гарантирует, что искаженные элементы, в том числе при пакетных ошибках, после деперемежения в декодере будут раскиданы по LDPC FEC-кадру. Это должно позволить кодеру LDPC выполнить восстановление.

Перечислим эти каскады:

а) битовый перемежитель: рандомизирует биты в пределах FEC-блока;

б) временной перемежитель: перераспределяет данные FEC-блока по символам в рамках кадра Т2. Это повышает устойчивость сигнала к импульсному шуму и изменению характеристик тракта передачи.

с) частотный перемежитель: он рандомизирует данные в рамках OFDM-символа с целью ослабить эффект селективных частотных замираний.

 

Поворот констелляционного созвездия

В Т2 используется новаторская техника поворота констеляционного созвездия на определенный круговой угол. Такой поворот может существенно повысить устойчивость сигнала при типичных проблемах эфира. За счет поворота диаграммы на точно подобранный угол каждая точка созвездия приобретает уникальные координаты (u1 и u2), не повторяемые остальными точками. Принцип показан на рис. 8.

 

dvb8

 

Каждая координата точки обрабатывается в модуляторе отдельно, и они передаются в OFDM-сигнале отдельно друг от друга, замешиваясь с u2 и u1 другого символа (то есть u2 и u1 могут передаваться на разных OFDM-несущих и в разных OFDM-символах).

В приемнике u2 и u1 опять объединяются, формируя исходное констеляционное созвездие, сдвинутое по кругу.Таким образом, если одна несущая или символ будут потеряны в результате интерференции, сохранится информация о другой координате, это позволит восстановить символ, хотя и с более низким уровнем сигнал/шум. При использовании симметричного (не повернутого) констелляционого созвездия разнесение u2 и u1 смысла не имеет потому, что символ может быть распознан только по сочетанию двух координат. Каждая из них в отдельности имеет двойников, и уникально только их сочетание.

 

dvb9

 

Тестовая имитация показала, что выигрыш в С/N за счет применением этой техники может доходить до 5 дБ.

 

Многоканальный прием

Т2 включает факультативную возможность использования кода Аламоути3, который создает возможность приема от двух передатчиков. В тех случаях, когда ресивер «видит» сигнал сразу от двух передатчиков, например, при приеме на ненаправленную антенну в небольшой одночастотной сети, его применение может значительно улучшить работу системы. Это кодирование совместно с изменением формата пилот-сигналов дает возможность без потерь разделить и отдельно декодировать сигналы, принятые из двух разных эфирных каналов. Причем наложение кода не ухудшает приема, если антенне доступен только один канал. Предварительные расчеты показали, что эта техника позволяет увеличить зону покрытия небольших одночастотных сетей до 30%.

 

Уменьшение отношения пиковой и средней мощностей передачи

Значительную долю расходов на передачу составляет стоимость электричества, питающего передатчики. OFDM-сигналы характеризуются относительно высоким отношением пиковой и средней мощностей. В связи с этим в Т2 включены две технологии, позволяющие снизить это отношение примерно на 20%. А это, в свою очередь, существенно снижает расходы на электропитание. Речь о следующих двух технологиях:

  • Резервирование тона. В этом случае 1% несущих остается в резерве, не перенося никаких данных, но может использоваться передатчиком для введения сигналов, размазывающих пики.
  • Активное расширение констелляционного созвездия. В этом случае часть крайних точек созвездия отводится дальше от центра так, что это уменьшает пики сигналов. Так как изменения касаются только крайних точек, уводимых в область, свободную от других точек, это не оказывает существенного влияния на способность ресивера декодировать данные.

Дополнительные функции

Будущее расширение кадров

Спецификация Т2 включает два дополнительных инструмента, которые в перспективе можно будет использовать для расширения кадра. Во-первых, структура кадра Т2 предусматривает возможность введения сигнализации для еще несуществующих типов кадров, которые будут предназначены для пока еще не определенных типов сигналов (рис. 10).

 

dvb10

 

То есть содержание этих кадров FEF (Future Extension Frames) пока не определено. Включение соответствующей сигнализации в спецификацию Т2 позволит ресиверам первого поколения распознать и проигнорировать FEF-фрагменты. Но забронированное уже сегодня место обеспечит обратную совместимость первых систем передачи с будущими, в которых эта сигнализация будет переносить информацию о новых типах содержимого.

 

Частотно-временная сегментация

Т2 также включает сигнализацию, необходимую для будущего применения частотно-временного деления на слоты (TFS — Time Frequency Slicing). Хотя основная спецификация предусматривает прием без применения TFS, в сигнализацию включены отметки, которые позволят будущим ресиверам, оснащенным двумя тюнерами, работать с TFS-сигналами. Такой сигнал будет занимать несколько РЧ-каналов, и разные фрагменты каждой из услуг будут в общем случае передаваться на разных частотах. Ресивер будет скачками перестраиваться с канала на канал, собирая фрагменты данных, относящихся к принимаемой услуге. Это позволит формировать пакеты с размерами, значительно превышающими допустимые для одного РЧ-канала, что, в свою очередь, даст возможность выигрыша за счет статистического мультиплексирования значительного количества каналов и гибкости частотного планирования.

 

Пропускная способность системы

Пропускная способность системы Т2 будет определяться выбором целого ряда системных параметров. Для этой цели предусмотрено множество опций, и о конкретной конфигурации приемники будут информироваться с помощью сигнализации. Выбор параметров представляет собой процедуру оптимизации работы системы, например, поиск компромисса между долей служебной информации и временем переключения с канала на канал или между пропускной способностью и устойчивостью к помехам.

Широкий набор конфигурируемых параметров также усложняет сравнение с другими системами. Так, например, если сравнивать Т2 с DVB-T, то для первого могут быть выбраны параметры, обеспечивающие такое же поведение сигнала в стандартном гауссовском канале, но предполагающие большую устойчивость Т2 в условиях сложного приема. Такой вариант уже соответствует значительно более высокой пропускной способности канала Т2 по сравнению с DVB-T. Однако можно выбрать и вариант с немного более низкими показателями для гауссовского канала, но по-прежнему (как ожидается) с несколько более высокими для каналов, со сложными условиями приема. В этом случае прирост пропускной способности будет еще больше.

Сравнительные характеристики систем с одинаковым поведением в гауссовском канале представлены в таблице 1. Как можно видеть, ожидаемый прирост пропускной способности относительно британского варианта DVB-T составит около 49%. Это результат теоретических оценок, так как в момент написания этого материала возможности проверить работу системы на реальном оборудовании в лаборатории или полевых условиях не было.

 

dvb-t

 

Заключение

В этом материале изложены основные положения нового стандарта DVB-T2. Он разрабатывался на базе не только DVB-T, но также и DVB-S2 технологии, которые уже подтвердили свою эффективность на практике. Дополнительно, в DVB-T2 появилось несколько новых механизмов, учитывающих особенности эфирной передачи. Кроме того, была расширена линейка базовых параметров, что позволяет оптимизировать размер служебно-контрольной надстройки кадров. Ожидается, что все это в комплексе приведет к значительному увеличению пропускной способности и одновременно повысит устойчивость системы. То есть позволит построить оптимальную сеть для передачи ТВЧ.

Адаптированный перевод Анны Бителевой.

 

© Телеспутник

Комментарии

Оставить сообщение